Détail de l'indexation
Ouvrages de la bibliothèque en indexation 620.192
Affiner la recherche Interroger des sources externes
Biodegradable polymer blends and composites from renewable resources / Long Yu / Hobeken : J. Wiley & Sons (2009)
Titre : Biodegradable polymer blends and composites from renewable resources Type de document : texte imprimé Auteurs : Long Yu, Auteur Editeur : Hobeken : J. Wiley & Sons Année de publication : 2009 Importance : 1 vol. (xi-487 p.) Présentation : ill., couv. ill. en coul. Format : 25 cm ISBN/ISSN/EAN : 978-0-470-14683-5 Langues : Anglais (eng) Index. décimale : 620.192 Polymères, plastiques Résumé : Présentation de l'éditeur : Biodegradable Polymer Blends and Composites from Renewable Resources provides a comprehensive, current overview of biopolymeric blends and composites and their applications in various industries. The book is organized according to the type of blend or composite. For each topic, the relationship between the structure of the blends/composites and their respective properties is explored, with particular focus on interface, compatibility, mechanical, and thermal properties. Real-life applications and potential markets are discussed. This is a premier reference for graduate students and researchers in polymer science, chemical and bio engineering, and materials science. Note de contenu : PART I: NATURAL POLYMER BLENDS AND COMPOSITES.
1. Polymers from Renewable Resources (L. Yu and L. Chen).
1.1 Introduction.
1.2 Natural Polymers.
1.3 Synthetic Polymers from Natural Monomers.
1.4 Polymers from Microbial Fermentation.
1.5 Summary.
2. Starch - Cellulose Blends (I. S. Arvanitoyannis and A. Kassaveti).
2.1 Introduction.
2.2 Starch and Starch Derivatives.
2.3 Cellulose and Cellulose Derivatives.
2.4 Starch-Cellulose Blends.
2.5 Applications.
3. Starch Sodium Caseinate Blends (I. S. Arvanitoyannis and P. Tserkezou).
3.1 Introduction.
3.2 Starch and Starch Derivatives.
3.3 Sodium Caseinate Derivatives.
3.4 Starch- Sodium Caseinate Blends.
3.5 Applications.
3.6 Comparison between Sodium Caseinate and other Edible films.
4. Novel Plastics and Foams from Starch and Polyurethanes (Y. Lu and L. Tighzert).
4.1 Introduction.
4.2 Starch-Filled Polyurethane Elastomers and Plastics.
4.3 Starch-Filled Polyurethane Foams.
4.4 Starch Grafted with Polyurethanes.
4.5 Thermoplastic Starch/Polyurethane Blends.
4.6 Concluding Remarks.
5. Chitosan Properties and application (N. Soares).
5.1 Sources.
5.1 Structures.
5.2 Application in Food Industry.
5.3 Antimicrobial Property.
5.4 Others Properties.
5.5 Chitosan derivatives .
6. Blends and Composites Based on Cellulose/Natural Polymers (Y. Wang and L. Zhang).
6.1 Introduction.
6.2 Cellulose: Structure and Solvents.
6.3 Cellulose/Natural Polymers Blends.
6.4 Cellulose Derivatives/Natural Polymers Blends.
6.5 Promising Application of Cellulose Blends.
PART II: ALIPHATIC POLYESTER BLENDS.
7. Stereocomplex between Enantiomeric Poly(lactide)s (H. Tsuji and Y. Ikada).
7.1 Introduction.
7.2 Stereocomplex formation.
7.3 Methods for inducing stereocomplexation.
7.4 Physical Properties.
7.5 Biodegradation.
7.6 Applications.
8. Polyhydroxyalkanoates Blends and Composities (G. Q. Chen and Tsinghua).
8.1 Introduction.
8.2 PHA Blended with Starch or Cellulose.
8.3 PHA Blended with PLA.
8.4 PHA Blended with PCL.
8.5 Blending of Different PHA.
8.6 PHA Blending with other Polymers.
8.7 PHA Composites.
PART III: HYDROPHOBIC AND HYDROPHILIC POLYMERIC BLENDS.
9. Starch-Poly(hydroxyalkanoate) Composites and Blends (R. Shogren).
9.1 Summary of starch, PHA structure and properties.
9.2 Why blend starch with PHA's?.
9.3 Problems with starch-PHA blends.
9.4 Granular starch-PHA composites.
9.5 Gelatinized starch-PHA blends.
9.6 Thermoplastic Starch/PHA Laminates and Foams.
9.7 Biodegradability, Recycling and Sustainability.
9.8 Applications and Production.
9.9 Future Research Needs and Directions.
10. Biodegradable Blends Based on Microbial Poly(3-hydroxybutyrate) and Natural Chitosan (C. Chen and L. Dong).
10.1 Introduction.
10.2 Preparation and Properties.
10.3 Conclusion.
PART IV: NATURAL FIBER-REINFORCED COMPOSITES.
11. Starch-Cellulose Fibres Composites (A. V’quez and V. Alvarez).
11.1 Introduction.
11.2 Starch Polymer.
11.3 Starch-Cellulose Fibre Composites.
11.4 Starch Based Blends as Polymer Matrix .
11.5 Starch Based Blend/Natural Fibre Composites .
11.6 Conclusion.
12. PLA/Cellulosic Fiber Composites (M. Shibata).
12.1 Introduction.
12.2 PLA/Abaca Composites.
12.3 PLA/Wood Flour Composites.
12.4 PLA/Lyocell Composites.
12.5 Conclusions.
13. Biocomposites of Natural Fibres and Poly(3-hydroxybutyrate) and Copolymers: Improved Mechanical Properties Through Compatibilization at the Interface (S. Wong and R. A. Shanks).
13.1 Traditional Composites and Novel Biodegradable Composites.
13.2 Natural Fibres.
13.3 Mechanical Properties of Natural Fibres.
13.4 Biodegradable Polymers.
13.5 Major Problems Associated with High Strength Composites.
13.6 Summary.
14. Starch-Fiber Composites (M. A. Hanna and Y. Xu).
14.1 Introduction.
14.2 Starch-Based Biopolymers.
14.3 Natural Fibers.
14.4 Starch-Natural Fiber Blends.
14.5 Summary.
PART V: BIODEGRADABLE NANOCOMPOSITES.
15. Starch based nanocomposites using layered minerals (H.R. Fischer and J.J. de Vlieger).
15.1 Introduction.
15.2 Starch-montmorillonite nano-composites.
15.3 Starch based nanocomposites using different layered minerals.
15.4 Biodegradable starch-polyester nanocomposite materials.
15.5 Discussion and Conclusions.
16. Polylactide Based Nanocomposites (S. S. Ray and J. Ramontja).
16.1 Introduction.
16.2 PLA Nanocomposites based on Clay.
16.3 PLA Nanocomposites based on Carbon Nanotubes.
16.4 PLA Nanocomposites based on other Nanofillers.
16.5 Properties of PLA Nanocomposites.
16.6 Biodegradability.
16.7 Melt Rheology.
16.8 Foam Processing .
16.9 Applications Possibilities and Future Prospect.
17. Advances in Natural Rubber/Montmorillonite Nanocomposites (D. Jia, L. Liu, X. Wang, B. Guo, and Y. Luo).
17.1 Introduction.
17.2 Materials and Process.
17.3 Characterization.
17.4 Results and Discussions.
17.5 Summary.
PART VI: MULTILAYER DESIGNED MATERIALS.
18. Multilayer Coextrusion of Starch/Biopolyester (L. Av’ous).
18.1 Introduction.
18.2 Materials and Process.
18.3 Characterization.
18.4 Results and Discussions.
18.5 Conclusion.Biodegradable polymer blends and composites from renewable resources [texte imprimé] / Long Yu, Auteur . - Hobeken : J. Wiley & Sons, 2009 . - 1 vol. (xi-487 p.) : ill., couv. ill. en coul. ; 25 cm.
ISBN : 978-0-470-14683-5
Langues : Anglais (eng)
Index. décimale : 620.192 Polymères, plastiques Résumé : Présentation de l'éditeur : Biodegradable Polymer Blends and Composites from Renewable Resources provides a comprehensive, current overview of biopolymeric blends and composites and their applications in various industries. The book is organized according to the type of blend or composite. For each topic, the relationship between the structure of the blends/composites and their respective properties is explored, with particular focus on interface, compatibility, mechanical, and thermal properties. Real-life applications and potential markets are discussed. This is a premier reference for graduate students and researchers in polymer science, chemical and bio engineering, and materials science. Note de contenu : PART I: NATURAL POLYMER BLENDS AND COMPOSITES.
1. Polymers from Renewable Resources (L. Yu and L. Chen).
1.1 Introduction.
1.2 Natural Polymers.
1.3 Synthetic Polymers from Natural Monomers.
1.4 Polymers from Microbial Fermentation.
1.5 Summary.
2. Starch - Cellulose Blends (I. S. Arvanitoyannis and A. Kassaveti).
2.1 Introduction.
2.2 Starch and Starch Derivatives.
2.3 Cellulose and Cellulose Derivatives.
2.4 Starch-Cellulose Blends.
2.5 Applications.
3. Starch Sodium Caseinate Blends (I. S. Arvanitoyannis and P. Tserkezou).
3.1 Introduction.
3.2 Starch and Starch Derivatives.
3.3 Sodium Caseinate Derivatives.
3.4 Starch- Sodium Caseinate Blends.
3.5 Applications.
3.6 Comparison between Sodium Caseinate and other Edible films.
4. Novel Plastics and Foams from Starch and Polyurethanes (Y. Lu and L. Tighzert).
4.1 Introduction.
4.2 Starch-Filled Polyurethane Elastomers and Plastics.
4.3 Starch-Filled Polyurethane Foams.
4.4 Starch Grafted with Polyurethanes.
4.5 Thermoplastic Starch/Polyurethane Blends.
4.6 Concluding Remarks.
5. Chitosan Properties and application (N. Soares).
5.1 Sources.
5.1 Structures.
5.2 Application in Food Industry.
5.3 Antimicrobial Property.
5.4 Others Properties.
5.5 Chitosan derivatives .
6. Blends and Composites Based on Cellulose/Natural Polymers (Y. Wang and L. Zhang).
6.1 Introduction.
6.2 Cellulose: Structure and Solvents.
6.3 Cellulose/Natural Polymers Blends.
6.4 Cellulose Derivatives/Natural Polymers Blends.
6.5 Promising Application of Cellulose Blends.
PART II: ALIPHATIC POLYESTER BLENDS.
7. Stereocomplex between Enantiomeric Poly(lactide)s (H. Tsuji and Y. Ikada).
7.1 Introduction.
7.2 Stereocomplex formation.
7.3 Methods for inducing stereocomplexation.
7.4 Physical Properties.
7.5 Biodegradation.
7.6 Applications.
8. Polyhydroxyalkanoates Blends and Composities (G. Q. Chen and Tsinghua).
8.1 Introduction.
8.2 PHA Blended with Starch or Cellulose.
8.3 PHA Blended with PLA.
8.4 PHA Blended with PCL.
8.5 Blending of Different PHA.
8.6 PHA Blending with other Polymers.
8.7 PHA Composites.
PART III: HYDROPHOBIC AND HYDROPHILIC POLYMERIC BLENDS.
9. Starch-Poly(hydroxyalkanoate) Composites and Blends (R. Shogren).
9.1 Summary of starch, PHA structure and properties.
9.2 Why blend starch with PHA's?.
9.3 Problems with starch-PHA blends.
9.4 Granular starch-PHA composites.
9.5 Gelatinized starch-PHA blends.
9.6 Thermoplastic Starch/PHA Laminates and Foams.
9.7 Biodegradability, Recycling and Sustainability.
9.8 Applications and Production.
9.9 Future Research Needs and Directions.
10. Biodegradable Blends Based on Microbial Poly(3-hydroxybutyrate) and Natural Chitosan (C. Chen and L. Dong).
10.1 Introduction.
10.2 Preparation and Properties.
10.3 Conclusion.
PART IV: NATURAL FIBER-REINFORCED COMPOSITES.
11. Starch-Cellulose Fibres Composites (A. V’quez and V. Alvarez).
11.1 Introduction.
11.2 Starch Polymer.
11.3 Starch-Cellulose Fibre Composites.
11.4 Starch Based Blends as Polymer Matrix .
11.5 Starch Based Blend/Natural Fibre Composites .
11.6 Conclusion.
12. PLA/Cellulosic Fiber Composites (M. Shibata).
12.1 Introduction.
12.2 PLA/Abaca Composites.
12.3 PLA/Wood Flour Composites.
12.4 PLA/Lyocell Composites.
12.5 Conclusions.
13. Biocomposites of Natural Fibres and Poly(3-hydroxybutyrate) and Copolymers: Improved Mechanical Properties Through Compatibilization at the Interface (S. Wong and R. A. Shanks).
13.1 Traditional Composites and Novel Biodegradable Composites.
13.2 Natural Fibres.
13.3 Mechanical Properties of Natural Fibres.
13.4 Biodegradable Polymers.
13.5 Major Problems Associated with High Strength Composites.
13.6 Summary.
14. Starch-Fiber Composites (M. A. Hanna and Y. Xu).
14.1 Introduction.
14.2 Starch-Based Biopolymers.
14.3 Natural Fibers.
14.4 Starch-Natural Fiber Blends.
14.5 Summary.
PART V: BIODEGRADABLE NANOCOMPOSITES.
15. Starch based nanocomposites using layered minerals (H.R. Fischer and J.J. de Vlieger).
15.1 Introduction.
15.2 Starch-montmorillonite nano-composites.
15.3 Starch based nanocomposites using different layered minerals.
15.4 Biodegradable starch-polyester nanocomposite materials.
15.5 Discussion and Conclusions.
16. Polylactide Based Nanocomposites (S. S. Ray and J. Ramontja).
16.1 Introduction.
16.2 PLA Nanocomposites based on Clay.
16.3 PLA Nanocomposites based on Carbon Nanotubes.
16.4 PLA Nanocomposites based on other Nanofillers.
16.5 Properties of PLA Nanocomposites.
16.6 Biodegradability.
16.7 Melt Rheology.
16.8 Foam Processing .
16.9 Applications Possibilities and Future Prospect.
17. Advances in Natural Rubber/Montmorillonite Nanocomposites (D. Jia, L. Liu, X. Wang, B. Guo, and Y. Luo).
17.1 Introduction.
17.2 Materials and Process.
17.3 Characterization.
17.4 Results and Discussions.
17.5 Summary.
PART VI: MULTILAYER DESIGNED MATERIALS.
18. Multilayer Coextrusion of Starch/Biopolyester (L. Av’ous).
18.1 Introduction.
18.2 Materials and Process.
18.3 Characterization.
18.4 Results and Discussions.
18.5 Conclusion.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Biodegradable polymers for industrial applications / Cambridge : Woodhead Publishing (2008)
Titre : Biodegradable polymers for industrial applications Type de document : texte imprimé Editeur : Cambridge : Woodhead Publishing Année de publication : 2008 Autre Editeur : Boca Raton, FL : CRC Press Importance : 531 p. ISBN/ISSN/EAN : 978-0-8493-3466-5 Prix : 258 EUR Note générale : Edited by Ray Smith Langues : Anglais (eng) Index. décimale : 620.192 Polymères, plastiques Résumé : D'après l'éditeur : "The vast majority of plastic products are made from petroleum-based synthetic polymers that do not degrade in a landfill or in a compost-like environment. Therefore, the disposal of these products poses a serious environmental problem. An environmentally-conscious alternative is to design/synthesize polymers that are biodegradable. Biodegradable polymers for industrial applications introduces the subject by outlining the classification and development of biodegradable polymers. Materials available for the production of biodegradable polymers are explored. Polymers derived from sugars, natural fibres, renewable forest resources, poly(lactic acid) and protein-nanoparticle composites are looked at in detail in this section. The properties and mechanisms of degradation are looked at, prefacing the subject with a chapter on current standards. The final part explores opportunities for industrial applications, with chapters on packing, agriculture and biodegradable polycaprolactone foams in supercritical carbon dioxide. Biodegradable polymers for industrial applications explores the fundamental concepts concerning the development of biodegradable polymers, degradable polymers from sustainable sources, degradation and properties and industrial applications. It is an authoritative book that will be invaluable for academics, researchers and policy makers in the industry." Biodegradable polymers for industrial applications [texte imprimé] . - Cambridge : Woodhead Publishing : Boca Raton, FL : CRC Press, 2008 . - 531 p.
ISBN : 978-0-8493-3466-5 : 258 EUR
Edited by Ray Smith
Langues : Anglais (eng)
Index. décimale : 620.192 Polymères, plastiques Résumé : D'après l'éditeur : "The vast majority of plastic products are made from petroleum-based synthetic polymers that do not degrade in a landfill or in a compost-like environment. Therefore, the disposal of these products poses a serious environmental problem. An environmentally-conscious alternative is to design/synthesize polymers that are biodegradable. Biodegradable polymers for industrial applications introduces the subject by outlining the classification and development of biodegradable polymers. Materials available for the production of biodegradable polymers are explored. Polymers derived from sugars, natural fibres, renewable forest resources, poly(lactic acid) and protein-nanoparticle composites are looked at in detail in this section. The properties and mechanisms of degradation are looked at, prefacing the subject with a chapter on current standards. The final part explores opportunities for industrial applications, with chapters on packing, agriculture and biodegradable polycaprolactone foams in supercritical carbon dioxide. Biodegradable polymers for industrial applications explores the fundamental concepts concerning the development of biodegradable polymers, degradable polymers from sustainable sources, degradation and properties and industrial applications. It is an authoritative book that will be invaluable for academics, researchers and policy makers in the industry." Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 0012800025588 620.192 BIO Ouvrage Centre de documentation UniLasalle/ Campus Rouen Salle de lecture Disponible Initiation à la chimie et à la physico-chimie macromoléculaires / GFP (Groupe français d'études et d'applications des polymères) / GFP (Groupe français d'études et d'applications des polymères) (1990)
Titre : Initiation à la chimie et à la physico-chimie macromoléculaires : volume 8 : strucutre des polymères et méthodes d'études Type de document : texte imprimé Auteurs : GFP (Groupe français d'études et d'applications des polymères), Auteur Editeur : GFP (Groupe français d'études et d'applications des polymères) Année de publication : 1990 Importance : 623 p. Langues : Français (fre) Index. décimale : 620.192 Polymères, plastiques Initiation à la chimie et à la physico-chimie macromoléculaires : volume 8 : strucutre des polymères et méthodes d'études [texte imprimé] / GFP (Groupe français d'études et d'applications des polymères), Auteur . - [S.l.] : GFP (Groupe français d'études et d'applications des polymères), 1990 . - 623 p.
Langues : Français (fre)
Index. décimale : 620.192 Polymères, plastiques Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité GEN128118 620.192 GFP Ouvrage Centre de documentation UniLasalle/ Campus Rouen Salle de lecture Disponible