Détail de l'auteur
Auteur Aurélien Géron |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow / Aurélien Géron / 2019
Titre : Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : concepts, tools, and techniques to build intelligent systems / Type de document : texte imprimé Auteurs : Aurélien Géron Mention d'édition : Second edition. Année de publication : 2019 Importance : xxv, 819 pages Présentation : illustrations Format : 24 cm ISBN/ISSN/EAN : 978-1-4920-3264-9 Note générale : Includes index. Langues : Anglais (eng) Catégories : Anglais
Manuel
Programmation informatiqueIndex. décimale : 005.1 Algorithmique et programmation (Python, Langage C, VBA) Résumé : "Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.
Explore the machine learning landscape, particularly neural nets
Use Scikit-Learn to track an example machine-learning project end-to-end
Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
Use the TensorFlow library to build and train neural nets
Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
Learn techniques for training and scaling deep neural nets"Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : concepts, tools, and techniques to build intelligent systems / [texte imprimé] / Aurélien Géron . - Second edition. . - 2019 . - xxv, 819 pages : illustrations ; 24 cm.
ISBN : 978-1-4920-3264-9
Includes index.
Langues : Anglais (eng)
Catégories : Anglais
Manuel
Programmation informatiqueIndex. décimale : 005.1 Algorithmique et programmation (Python, Langage C, VBA) Résumé : "Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.
Explore the machine learning landscape, particularly neural nets
Use Scikit-Learn to track an example machine-learning project end-to-end
Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
Use the TensorFlow library to build and train neural nets
Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
Learn techniques for training and scaling deep neural nets"Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité GEN000000001070 005.1 GER Ouvrage Centre de documentation UniLasalle/ Campus Rouen Archives Disponible